PLOS ONE Alerts: New Articles

  • Correction: What matters most for early childhood development? Evidence from Malda district, India

    by The PLOS ONE Staff

  • Screening instruments of cognition: The relation of the mini-mental state examination to the Edinburgh cognitive and behavioural ALS screen in amyotrophic lateral sclerosis

    by Angela Serian, Julia Finsel, Albert C. Ludolph, Ingo Uttner, Dorothée Lulé


    The Edinburgh Cognitive and Behavioural ALS Screen (ECAS) is an established cognitive screening instrument for patients with amyotrophic lateral sclerosis (ALS). Different from tools like the Mini-Mental State Examination (MMSE), it is adjusted for motor impairment, yet, the latter remains one of the most widely used screening instruments, also in ALS studies. Thus, it is of utmost importance to relate outcome scores of both instruments to allow for comparison in ALS patients. This study reports on the performance of ALS patients in both tests with regard to incidence and degree of cognitive impairment, and the correspondence of both, ECAS and MMSE scores.


    We examined N = 84 ALS patients with the German versions of the ECAS and the MMSE. Performance in both tests regarding incidence and degree of cognitive impairment, and correspondence of frequency of cognitive impairment according to both tests was examined. The relationship between ECAS and MMSE scores was modelled with a non-linear regression model.


    All ALS patients were able to complete the ECAS, 89.3% (N = 75) were capable to complete the MMSE. Prevalence of cognitive impairment was in both tests 22.7%, however agreement was only 52.9%. Despite, regression analyses yielded a strong positive relationship (adjusted R2 = .68) between the ECAS total score and the MMSE total score. Both tests were able to identify all patients with dementia.


    These results suggest that the MMSE is not ideal for cognitive screening in early-stage ALS patients. However, a rough translation of MMSE scores in ECAS scores is possible to estimate the cognitive performance level of patients, with the ECAS being more discriminative in the lower range of cognitive dysfunction (ECAS score: 80–136), for which the MMSE does not define cognitive impairment (corresponding MMSE score: 27–30).

  • Correction: Tacrolimus (FK506) Prevents Early Stages of Ethanol Induced Hepatic Fibrosis by Targeting LARP6 Dependent Mechanism of Collagen Synthesis

    by Zarko Manojlovic, John Blackmon, Branko Stefanovic

  • The bilevel chamber revealed differential involvement of vasopressin and oxytocin receptors in female mouse sexual behavior

    by Himeka Hayashi, Kie Shimizu, Kazuaki Nakamura, Katsuhiko Nishimori, Yasuhiko Kondo

    Arginine vasopressin (AVP) and oxytocin (OT) are well-known as neuropeptides that regulate various social behaviors in mammals. However, little is known about their role in mouse female sexual behavior. Thus, we investigated the role of AVP (v1a and v1b) and OT receptors on female sexual behavior. First, we devised a new apparatus, the bilevel chamber, to accurately observe female mouse sexual behavior. This apparatus allowed for a more precisely measurement of lordosis as receptivity and rejection-like behavior (newly defined in this study), a reversed expression of proceptivity. To address our research question, we evaluated female sexual behavior in mice lacking v1a (aKO), v1b (bKO), both v1a and v1b (dKO), and OT (OTRKO) receptors. aKO females showed decreased rejection-like behavior but a normal level of lordosis, whereas bKO females showed almost no lordosis and no change in rejection-like behavior. In addition, dKO females showed normal lordosis levels, suggesting that the v1b receptor promotes lordosis, but not necessarily, while the v1a receptor latently suppresses it. In contrast, although OTRKO did not influence lordosis, it significantly increased rejection-like behavior. In summary, the present results demonstrated that the v1a receptor inhibits proceptivity and receptivity, whereas the v1b and OT receptors facilitate receptivity and proceptivity, respectively.

  • 8-port MIMO antenna at 27 GHz for n261 band and exploring for body centric communication

    by Anupma Gupta, Meet Kumari, Manish Sharma, Mohammed H. Alsharif, Peerapong Uthansakul, Monthippa Uthansakul, Shonak Bansal

    This paper presents a compact 5G wideband antenna designed for body-centric networks (BCN. The single element antenna design includes a simple T-shaped radiator patch with ring shaped ground plane and transformer impedance feedline. First, the antenna was simulated in free-space, and its resonant frequency is found to be 27 GHz, falling within 5G’s n261 band. The proposed single radiator antenna has a size of 23.375 mm3, and it offers a wide impedance bandwidth of 2.0 GHz (26–28 GHz). Parametric studies demonstrated that by increasing the length of slots in patch, the antenna frequency can be reduced further. Single radiator antenna is used as 8-element MIMO structure. Parallel adjacent antenna in X-direction has minimal coupling effect, whereas antenna placed in Y-direction has high coupling effect. Thus, coupling is reduced by etching a wall of slots in ground plane. It alters the surface current interference in Y-direction and limits the coupling effect. The antenna is investigated to use in body area network applications. To evaluate its on-body performance, an equivalent body model is virtually developed. The on-body performance is assessed by placing the antenna in close proximity to body model. Stable and robust performance is achieved for the on-body operation. At the resonant point, the antenna exhibits a reflection coefficient of -30 dB (free space) and -40 dB (on-body), high isolation of above 20 dB between adjacent radiators and above 30 dB for other radiators. Antenna has stable performance for different body tissues and on the non-planar structures. Bidirectional radiation pattern with gain of 2.53 dB and broadside type orientations with gain of 4.64 dB are achieved for free space and on body operations respectively. low specific absorption rate makes antenna safe for health care devices. Further, diversity performance is measured in terms of envelope correlation coefficient (ECC), and diversity gain (DG). Maximum Value of ECC is 0.005 and minimum value DG is 9.97 at 27 GHz which confirms the excellence of antenna for MIMO applications.